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An Ashby-type deformation mechanism map may be considerably simplified by plotting 
in the form of normalized stress versus the reciprocal of the homologous temperature. In 
this form, the boundaries separating the various fields appear as straight lines and the 
constant strain rate contours may be approximated as straight lines. Representative maps 
are presented for conditions of high temperature creep, and a simple procedure is 
outlined for constructing several maps for the same material at different grain sizes. 

1. Introduction 
It has been recognized for many years that a poly- 
crystalline material, when subjected to an applied 
stress, may deform by one or more of a number of 
different mechanisms. An important concern in 
studies of mechanical behaviour is thus to identify 
the dominant deformation process under any 
selected conditions of stress, temperature, and 
grain size. 

It was first suggested by Weertman and 
Weertman [1,2] that it may be possible to con- 
struct a creep diagram in which the normalized 
stress, o/G, is plotted as a function of the homolo- 
gous temperature, T/Tm, where o is the applied 
stress, G is the shear modulus, T is the absolute 
temperature, and Trn is the melting point of the 
material in degrees Kelvin. In this form, it was 
demonstrated schematically that the diagram may 
be divided into four distinct regions: Nabarro-  
Herring creep at very high temperatures, high tem- 
perature (Andrade) creep and low temperature 
(logarithmic) creep at o/G> 10 -s,  and anelastic 
(recoverable) creep at o/G < 10 -s.  A diagram of 
this type, which plots two of the variables in the 
basic rate equation when the other variables remain 
constant, is now generally referred to as a defor- 
mation mechanism map. 

The concept of deformation mechanism 
mapping was first developed for real materials in 
the detailed work of Ashby [3] in which the best 
available source data were used to construct indi- 
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vidual maps of normalized stress versus homologous 
temperature for several different metals and 
ceramics. Since this early work, similar maps have 
been presented for a large number of materials 
[ 4 -28 ] ,  and such maps are now becoming an 
accepted feature of materials texts [29-37] .  

An inherent problem with the Ashby-type map 
is the difficulty of construction, since a map may 
only be developed for a specific material by using 
a computer to solve the relevant constitutive 
equations for all the possible deformation processes 
at a very large number of points (typically, ~4000 
to 6000) in stress-temperature space. Further- 
more, having constructed a map for a material 
having a selected grain size, there is no simple 
procedure to obtain a new map for the same ma- 
terial with a different grain size. As a result, it is 
not easy to utilize directly deformation mapping 
techniques in practical situations. 

One method of circumventing this difficulty is 
to plot a map using two other variables: for 
example, normalized grain size, d/b, versus 
normalized stress, o/G, at constant temperature, 
where d is the grain size and b is the Burgers vector 
[38, 39],  or normalized grain size, d/b, versus the 
reciprocal of homologous temperature, Tm/T , at 
constant normalized stress [40,41].  However, 
there are many situations in which it is especially 
attractive to display mechanical data in the form 
of stress versus temperature at constant grain size, 
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as, for example, in engineering situations where a 
material of a single grain size is subjected to a wide 
range of stresses and temperatures. The purpose of 
this paper is to re-examine the Ashby-type defor- 
mation mechanism map and to present a simple 
construction procedure which eliminates the 
requirement for detailed computation. 

2.  T h e  Ashby-type deformation mechanism 
map 

A schematic illustration of an Ashby-type defor- 
mation mechanism map is shown in Fig. 1, where 
o/G covers eight orders of magnitude (from 10 -8 
to 1.0), the homologous temperature scale extends 
from absolute zero to the melting point, and the 
map relates to a constant value of the grain size. 
The thick lines on the map represent the bound- 
aries between fields in stress-temperature space 
within which a single mechanism dominates the 
deformation behaviour. These lines therefore trace 
out the loci of all points where the two adjacent 
processes have equal strain rates; where three lines 
meet, the three adjacent processes make equal 
contributions. 

The upper horizontal line, at a/G ~- 4 x 10 -2 , 

represents the ideal strength of the material. The 
field marked dislocation glide, in the normalized 
stress range of 4 x 103 < o / G < 4  x 10 -2 , corre- 
sponds to the stress-temperature regime in which 
the material deforms by the conservative motion 
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Figure 1 A schematic Ashby- type  deformat ion  mechan i sm 
map,  plot t ing logari thmic normalized stress, o/G, versus 
homologous  temperature ,  TIT m, for a cons tan t  grain size. 

of dislocations by glide through the lattice. At 
values of o/G less than - 4  x 10 -3 , the defor- 
mation behaviour arises from diffusion-controlled 
creep processes. The material deforms by a dislo- 
cation climb process at high stresses and tempera- 
tures, by Nabarro-Herring diffusional creep 
[42, 43] at low stresses and high temperatures, 
and by Coble diffusional creep [44] over the 
entire stress range at low temperatures. 

The two thin lines superimposed on to the fields 
are contours of constant strain rate, for steady-state 
rates of  10 -2 and 10 -1~ sec-l~ respectively. These 
lines join points in stress-temperature space 
having the same predicted strain rates. 

Although schematic in form, Fig. 1 is identical 
to the maps originally developed by Ashby [3], 
with the exception that in some early work the 
strain rate contour for 10 -8 sec -1 was drawn as an 
additional boundary to distinguish an elastic 
regime at lower stresses. This is justified when 
using a testing machine which cannot detect strain 
rates below 10 -8 sec -1 , but in general it is usually 
more convenient to show the entire map and then 
to superimpose a number of different strain rate 
contours. 

Without exception, all of the practical interest 
in the use of deformation mechanism maps has 
centred on their application in the analysis of data 
obtained from high temperature creep experiments. 
This interest arises because of the numerous pro- 
cesses which may contribute to steady-state flow 
under creep conditions, so that the use of  maps is 
particularly attractive for mechanism identifi- 
cation. Accordingly, this paper is specifically con- 
cerned with the construction of maps for tempera- 
tures in the range from 0.4 to 1.0 Tm and for 
normalized stresses below 10 -3 *: this area is indi- 
cated by the broken lines in Fig. 1. 

3. Constitutive relationships for plastic 
flow 

For the purposes of illustration, maps will be 
developed for high purity aluminium. This metal 
was selected because of the excellent experimental 
data available for high temperature creep, and 
because the same material was used for illustrative 
purposes in two earlier analyses [38, 40].  

Four different creep mechanisms are considered: 
Nabarro-Herring [42, 43] and CoNe [44] dif- 

*A breakdown in creep behaviour generally occurs at stress levels greater than  - 2  X 10 -3 , and the  creep rate then  
increases essentially exponent ia l ly  with stress. This breakdown is not  included in Fig. 1. 
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fusional creep, Harper-Dorn creep [45], and a 
dislocation climb process. Each of these mech- 
anisms may be represented by a constitutive 
relationship for the steady-state creep rate, ~, of 
the form 

= ADo exp (-- Q/RT) ~ (1) 

where A is a dimensionless constant, Do is a fre- 
quency factor, Q is the activation energy, R is the 
gas constant (8.31 Jmol  -x K -1 if Q is in Jmol-a) ,  
k is Boltzmann's constant, and p and n are 
constants. 

The relationships for these four processes are 
shown in Table I, where the subscripts NH, Co, HD, 
and c relate to the Nabarro-Herring, Coble, 
Harper-Dorn, and disclocation climb processes, 
respectively, the subscripts 1 and gb refer to lattice 
and grain boundary diffusion, respectively, and n e 
is the stress exponent for the climb process. The 
form of these four relationships was discussed 
earlier [38]. The following values were assigned 
to the various constants in Equations 2 to 5: 

ANH = 28, 

Aco = 66.8, 

AHD = 1.67 x 10 -11, 

A c = 2.5 X 10 6, 

D0(gb) = Do(l) = 1.86, 

Q1 = 143.4kJmol-1, 

Qgb = 0.6 Q1, 

b = 2.86 x 10 -s cm, 

n e = 4.4. 

The shear modulus was taken as G = Go -- (AG)T,  
where Go = 3.022 x 104 MPa and AG = 16.0 MPa 
K -1 ' 

The four mechanisms listed in Table I operate 
independently, so that the total strain rate is equal 
to the sum of the rates due to the four individual 
processes. 

4. Construction of a deformation 
mechanism map 

The problem associated with the construction of 
Fig. 1 is that both the field boundaries and the 
strain rate contours appear as curved lines, so that 
each map, for any selected material and grain size, 
must be constructed individually by computer. 
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The computer subroutine has been published 
by Frost and Ashby [12]. Briefly, it involves using 
the various constitutive relationships to evaluate 
incrementally the rate-controlling process at each 
of the 4000 points defined by 50 equal increments 
of temperature and 80 logarithmically spaced 
increments of stress. The position of a particular 
strain rate contour is obtained by searching 
through the stress increments at constant tempera- 
ture until two adjacent increments are located 
which yield, respectively, strain rates lower and 
higher than the required value. In a similar manner, 
the field boundaries are obtained by locating 
adjacent stress increments where there is a change 
in the dominant mechanism. The complexity of 
this procedure arises in part because of the necessity 
of considering dislocation climb and glide as alter- 
native mechanisms, and then choosing the faster of 
these two processes. 

Maps of the type shown in Fig. 1 may be con- 
siderably simplified by plotting the data in the 
form of normalized stress, a/G, versus the recipro- 
cal of the homologous temperature, Tm/T. An 
example is shown in Fig. 2 for pure aluminium 
having a grain size of 100pro, using the relation- 
ships given in Table I. Fig. 2 covers temperatures 
from 0.4 to 1.0 T m and values of o/G from 10 -8 
to 10 .3 , so that it directly corresponds to the area 
contained within the broken lines in Fig. 1. As 
indicated in Fig. 2, a reciprocal temperature 
relationship leads to a map in which the boundaries 
separating the various fields appear as straight, 
rather than curved, lines. 

TABLE I Constitutive relationships for deformation 
mechanisms in high purity aluminium 

Mechanism Constitutive relationship for ~ (sec -~ ) 

Nabarro- 4NH = ANHDo(1) exp (--Q1/RT) 
Herring Gb~b~ 

Coble eCo = ACoD0(gb) exp (-- Qgb/RT) 

Harper- ~I-ID = AI-IDDo(17 exp (--Q1/RT) 
Dorn 

Climb d e = AeDo (1) exp (--Q1/R T) 

Gb (G)ne 
kT 

(4) 

(s) 
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Figure 2 Deformation mechanism map of 
normalized stress versus the reciprocal of 
homologous temperature for poly- 
crystalline aluminium having a grain size 
of 100#m, covering conditions of high 
temperature creep (a/G <~ 10 -3 and 
T ~> 0.4 Tin). 

Fig. 2 shows three different fields: dislocation 
climb at high stress levels, Nabarro-Herring creep 
at low stresses and high temperatures, and Coble 
creep at low stresses and low temperatures. 
Harper-Dorn creep does not appear on this map, 
because there is no value of stress and temperature 
at which eI~D is the fastest process. As indicated by 
the broken lines in Fig. 2, the climb/Harper-Dorn 
and Coble/Harper-Dorn boundaries bothlie within 
the field for Nabarro-Herring creep, so that, for 
d =  100/~m, eNH>eHD under all experimental 
conditions. 

Fig. 2 also shows two contours of constant 
strain rate, for 10-Psec -1 (~0.01%/day) and 
10-1~ -1 (~ 3%/10 year), corresponding to a 
lower limiting laboratory strain rate and an upper 
limit for structural design purposes, respectively. 

The precise method of constructing a map of 
this type is illustrated in Fig. 3, where the table 
inset summarizes the appropriate values used for 
the dimensionless constants, the activation 
energies, and the stress exponent, n e. The 
procedure follows four basic steps: 

(1) Since Nabarro-Herring creep and the climb 
process both depend on temperature through the 
magnitude of exp(--Q1/RT), the boundary 
separating these two processes is independent of 

temperature. From Equations 2 and 5, the 
boundary is given by 

o [ANH(b~2] 1/(ne-1) 
= [ A e \ d ]  (6) 

The corresponding relationship for the climb/ 
Harper-Dorn boundary, obtained from Equations 
4 and 5, is 

a [AHpD_] ~/(nc-t) 

The appearance of Harper-Dorn creep on a 
deformation mechanism map thus requires that the 
value of o/G predicted by Equation 7 is larger than 
the value predicted by Equa:tion 6. This 
may be expressed explicitly in the form of a 
required minimum grain size for Harper-Dorn 
creep: 

~d NI-I~ 1/2 

(2) Since Nabarro-Herring and Coble creep are 
both Newtonian viscous processes (i.e., n = 1), 
the boundary separating these two processes is 
independent of stress. From Equations 2 and 3, 
the boundary is given by 
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Figure 3 Method of constructing a defor- 
mation mechanism map of normalized 
stress versus the reciprocal of homologous 
temperature for conditions of high tem- 
perature creep (e/G <<. 10 -3 and T/> 
0.4 rm). 
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Tm 1 log [ANa D00) d ] 
T - ~ [ A c o  D0(gb) b (9) 

where ~ is a constant defined as 

Q1 -- Qgb (10) 
= 2.3 RTm 

The corresponding relationship for the Coble/ 
Harper-Dorn boundary, obtained from Equations 
3 and 4, is 

~--- ~ [-~co D--~(gb) ~) ] (II) 

(3) On a plot of logarithmic o/G versus Tm/T, 
the slope of a boundary between two adjacent 
mechanisms may be expressed as: 

AQ/2.3 RTm 
Slope = (12) 

An 

where AQ and An are the differences in the acti- 
vation energies and the stress exponents, respec- 
tively, for the two mechanisms on either side of 
the boundary. Thus, the slope of the Coble/climb 
boundary is equal to tP/(ne -- 1), and a line having 
this slope is drawn from the point of intersection 
of the two boundaries established by Equations 6 
and 9. 

(4) A contour of constant strain rate is inserted 
on to the map by solving one of the constitutive 
relationships for a selected strain rate at a point 
within an established field, and then drawing a 
straight line through this point within the field 
with a slope given by: 

Q/2.3 RTm 
Slope ~ (13) 

n 

where Q and n apply to the appropriate mechan- 
ism in the field. Equation 13 gives slopes of  
Q]/2.3RTm and Q1/2.3ncRTm for the Nabarro-  
Herring and climb fields, respectively. 

Additional contours may be added to the map 
for different strain rates since an order of magni- 
tude increase in e displaces the contour to higher 
stresses by a factor of 1/n when measured parallel 
to the normalized stress axis. Thus, strain rates 
which differ by an order of magnitude are separated 
by one order of magnitude on the e/G scale within 
the Nabarro-Herring, Coble and Harper-Dorn 
fields. 

Strictly, the drawing of straight lines within 
each field is not entirely correct. As indicated by 
the approximation in Equation 13, the relationship 
has been simplified by neglecting the factor G/T 
which occurs as a pre-exponential term in each of 
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the four constitutive relationships given by 
Equations 2 to 5. In practice, this approximation 
introduces only a small error which is of minor 
significance in comparison with the uncertainties 
associated with the various terms in the constitutive 
equations used to construct the map. 

A second error arises because the strain rates 
due to the different mechanisms are additive, so 
that the contours are slightly curved in the vicinity 
of the field boundaries. Again, the simplification 
of drawing straight lines up to the boundaries leads 
to an error which is very much less than the uncer- 
tainties in the constitutive relationships. This 
second approximation was also used by Ashby [3] 
in constructing the original deformation mechanism 
maps. 

5. Construction of maps for different grain 
sizes 

Harper-Dorn creep is not included in the map for 
aluminium at d = 1 0 0 # m  because ~NH>~HD 
under all experimental conditions. The limiting 

grain size at which Harper-Dorn and Nabarro-  
Herring creep contribute equally to the observed 
creep rate may be obtained from Equation 8, giving 
d = 370#m. 

The map for this critical grain size is shown in 
Fig. 4, indicating the equal contributions arising 
from the Harper-Dorn and Nabarro-Herring 
processes. At higher values of d, the CoNe/Harper-  
Dorn boundary moves to lower temperatures, but 
the climb/Harper-Dorn boundary remains fixed in 
position because both processes are independent 
of grain size. Thus, the intercept on the left hand 
axis at o/G 2 9  x 10 -6 represents a lower limiting 
normalized stress for the transition to Newtonian 
viscous flow. As indicated in Fig. 5 for d = 0.1 cm, 
the Nabarro-Herring process is excluded when the 
cliInb/Nabarro-Herring and Coble/Nabarro- 
Herring boundaries both fall within the Harper -  
Dorn field. 

Reference to Figs. 2 to 5 indicates that, since 
the climb process does not depend on grain size, 
the strain rate contours remain fixed in position 

Figure 4 Deformation mechanism map of 
normalized stress versus the reciprocal of 
homologous temperature for polycrys- 
talline aluminium having a grain size of 
370#m. 
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*Using the general relationship for ~ given in Equation 1, the variation of logarithmic a/G with Tm/T is precisely 
expressed as 

nlog = , o g [ ~ t ~ )  ] + 2 . ~  m (14) 

Equation 13 neglects the slight temperature dependence resulting from the logarithmic term on the right hand side of 
the equality in Equation 14. 
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Figure 5 Deformation mechanism map of 
normalized stress versus the reciprocal of 
homologous temperature for polycrystal- 
line aluminium having a grain size of 
1.0 cm. 
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within the climb field. Similarly, at large grain 
sizes when Harper-Dorn creep becomes important, 
the contours also remain fixed in position within 
the Harper-Dorn  field.* This is an attractive 
feature of  maps of  this type, since, by using 
Equation 13, it provides a method for plotting 
contours over the entire map at any selected grain 
size. A new map for a different grain size is thus 
achieved by a very simple five-step procedure: 

(1)Use Equation 8 to determine the lower 
limiting grain size for Harper-Dorn creep. 

(2) Determine the intercept on the o/G axis 
from Equation 6 if eNH > eHD or from Equation 

7 if 6NH < s 

(3) Determine the intercept on the Tm/T axis 
from Equation 9 if 6NH > ~HD or from Equation 
1 1 if eNH < eI~n- 

(4) Draw the field boundaries parallel to those 
already calculated for the initial grain size. 

(5) Place the strain rate contours at the same 
positions within the cl imb field, and complete the 
contours using Equation 13. 

6. Construction of an Ashby map for o/G 
versus T/Tm 

If  required, it is possible to transpose the data 
from a plot of  e/G versus Tm/T to the standard 
form of  e/G versus T/Tm. An example is shown in 
Fig. 6, representing the data of  Fig. 2 for aluminium 
with d = 100 #m. In view of  the added complexity 
in drawing a map of  this type, it seems preferable 
to construct the maps in the form of a/G versus 
Tm/T. 

7. Discussion 
The deformation mechanism maps developed in 
this report represent a simplified version of  the 
Ashby map for conditions of  high temperature 
creep (o/G~ 10 -3 and T>~0.4 Tin). They have 
two significant advantages over the standard maps: 
(1) they are very easy to construct without the use 
of  a computer, and (2) there is a simple procedure 
for constructing several maps for the same material 
at different grain sizes. Furthermore, the construc- 
tion procedure permits the presentation of  the 

*A comparison of Figs. 4 and 5 reveals a slight difference in the position of the two strain rate contours within the 
Harper-Dorn field. This difference arises because Fig. 4 relates to a grain size of 370~m, when Harper-Dorn and 
Nabarro-Herring creep both contribute equally to the strain rate. At larger grain sizes, when (:NIt is significantly 
lower than ~I-ID, the strain rate contours in the Harper-Dorn field are independent of the value ofd. 
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Figure 6 The data of Fig. 2 transposed to 
an Ashby-type deformation mechanism 
map for conditions of high temperature 
creep (cr/G <~ 10 -3 and T~> 0.4 Tin). 

maps either in the simple format of  o/G versus 

T m / T  or, i f  required, by transposing to the more 
usual form of  g/G versus T/Tm.  

As indicated in earlier reports [ 3 8 - 4 1 ] ,  the 
accuracy of  all maps is necessarily l imited by  the 
accuracy of  the constitutive relationships used in 
their construction.  This l imitat ion is of  relatively 
minor importance for pure aluminium, but  may be 
important  in other materials where there is less 
good experimental  data to establish the various 
terms in the constitutive equations. A detailed dis- 
cussion of the use of  deformation mechanism 
maps in the predict ion of  creep behaviour was 
presented earlier [46] .  

8. Summary and conclusions 
(1) It is demonstrated that  the Ashby-type defor- 
mation mechanism map may be considerably 
simplified by plott ing in the form of  normalized 
stress, o/G, versus the reciprocal of  the homologous 
temperature,  Tm/T.  In this form, the field bound-  
aries appear as straight lines, and the constant 
strain rate contours may be approximated as 
straight lines. 

(2) Representative maps are presented for pure 
aluminium under condit ions of  high temperature 
creep (a/G <. 10 -3 and T~> 0.4 Tin). 

(3) A simple procedure is outl ined for con- 
structing several maps for the same material at 
different grain sizes. 

(4) If  required, these maps may be transposed 

to the standard form of  o/G versus T/Tm.  
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